

USING DYNAMIC TECHNIQUES IN COMPUTER GRAPHICS APPLICATIONS

Tănasie Răzvan, Tunaru Cristina

University of Craiova, Faculty of Automation, Computers and Electronics,

Software Engineering Department,

Bvd. Decebal, Nr. 107, Craiova, Romania,

E-mail: tanasie_razvan@software.ucv.ro

E-mail: krysmary8@yahoo.com

Abstract: This paper focuses on animation creation based on time dependent

transformations in a real case and presents a solution that uses computer graphics

techniques in interactive applications. The application is elaborated starting with a story

theme and every character or element of the scene has a transformation matrix attached

that defines the final movement of the object.

Keywords: computer graphics, rendering, DirectX, mesh, vision.

1. INTRODUCTION

Computer graphics is a discipline which is situated

between the computer digital system programming

and computation techniques that concern image

design.

The object of computer graphics is the creation, the

storage and the manipulation of the models of some

objects and effects as well as the images attached to

them, using the digital computer. A science

connected with this is the computer image processing

that deals with images using the digital computer.

The two disciplines have some common aspects, but

they use different methods and techniques. The

current vision is adjacency between them, especially

after the appearance of the high resolution raster

graphics. Even the mathematical instruments they use

are complementary: the image design is based on

geometry and algebra, while the image analysis is

based on trigonometry and mathematical analysis.

In this paper one of the great aspects in computer

graphics is discussed, namely, the creation of

animation. It is true, the animation can be done in 3D

Studio Max, but this manner is not our objective.

In DirectX9, the animation can be created using

frames or by simple and complex transformations

over the objects, transformations that are time

dependent.

This paper debates about how to create animation

with basic time dependent transformations in a real

case: using computer graphics techniques in

interactive applications. The application is elaborated

starting with a story theme and every character or

element of the scene has a transformation matrix

attached that defines the final movement of the

object.

Beside the transformation matrices modifying the

form of the object that will be discussed, every

component part of the 3D scene has a projection into

the view space. For this operation two functions are

used: the WINAMPID3DXMatrixLookAtLH()

function, whose parameters specify the position

where the camera is placed in the world, a point in

the world where the camera aims and a vector that

indicates which direction is “up” in the 3D world

(usually this is the Oy axis). This function sets the

view matrix.

WINAMPID3DXMatrixLookFovLH() function is

used for setting the projection matrix. The projection

transformation defines our viewing volume (frustum)

and is responsible for projecting the geometry in the

frustum onto the projection window. The projection

matrix is complex, using a view space (usually ¼ pi),

distance to near and to far plane and aspect ratio (the

geometry of the projection window is eventually

transformed to screen space; the transformation from

a square – projection window – to the screen, witch is

a rectangle, causes a stretching distortion; the aspect

ratio is simply the ratio between the screen’s two

dimensions and it is used to correct the distortion

caused by mapping from a square to a rectangle;

aspectRatio = screenWidth/screenHeight).

To make one or more transformations to an object the

transformation matrix must be set, based on which

are the transformations for the object and which is

their application order. The application of a number

of fundamental transformations to an object by

modifying its position in time is made by modifying

the object’s initial coordinates. The most important

thing in creating animation is to find the time

dependence for the evolution of the coordinates of

those objects.

2. GENERAL ASPECTS

In order to set different objects, either meshes or

simple objects created in Direct3D, transformation

matrices were used. To generate the animation both

static and dynamic transformations were used. The

matrices used to create all the operations are

homogeneous matrices. The order of the fundamental

transformations application it is very important, as

well as the choice of time variables.

Depending on the order of the operations application,

objects might have a different visualization. For

instance, if an object, situated initially in the origin,

is first rotated and then translated, the result will be a

rotation around an axis, but the axis is out of origin).

Instead, if first a translation is done and then a

rotation (the rotation is time dependent) the result

will not be a rotation around Oy axis (for example)

where the object circulates round Oy axis like it is

attached on this axis, but a rotation around Oy axis

with a radius determined by the translation vector

(see Fig. 1.).

Fig. 1. Different results for different order of

transformation application – rotation and translation.

Fig. 2. Different results for different order of

transformation application – scaling and translation.

Let’s analyze the evolution of a 3D object when it is

translated and scaled, in both situations (first a

scaling then a translation; first a translation, then a

scaling). The scaling factors and the point where the

translation is made are the same in both situations.

The difference is presented in Fig. 2.

The objects used for various transformations can be

objects created with drawing primitives from the

DirectX libraries or the meshes from 3D Studio Max

loaded into Direct3D object. If we are dealing with a

drawn object, this is seen like as a whole unit. In the

case of meshes, to create animation can be more

complex. A mesh consists of one or more subsets. A

subset is a group of triangles in the mesh that can be

all rendered using the same attributes. Let’s take the

following situation: a gremlin (every component part

of the creature is a subset) that trembles across a fire

hole and, during this time, it moves his tail. In order

to realize this animation, both the gremlin’s body (all

that represents the body, except the tail) and his tail,

will do a periodical translation movement on Oy axis,

at the same time. More, over the tail will make a

supplementary movement, a translation or a rotation

(it depends what kind of movement is wanted for this

object) generated by means of a different time

dependency from the first used.

3. ANIMATION REALIZATION

These being said, let’s suppose that a complete and

permanent rotation to a mesh is needed. First, apply

to the object o periodical rotation around Oy axis,

then it will be translated into the point from where

the rotation will start. Notice that the transformation

that appears first in the line of multiplied

transformations will actually be the last to be applied.

The translation matrix attached to this operation is:



















−
=

1000

10100

9010

18001

T (1)

and the rotation matrix around Oy axis:



















−
=

1000

0cos0sin

0010

0sin0cos

tt

tt

Ry
 (2)

where t = cos π * timeGetTime()/1500

= -timeGetTime()/1500

It is noticeable the way how the rotation period is

chosen.

Then,





















⋅⋅=



















11

0

0

0

z

y

x

TR
z

y

x

y
 (3)

That means we have the next relation after the

determinations:







































−−−

−

=



















1

.

1000

cos10sin18cos0sin

9010

sin10cos18sin0cos

1

0

0

0

z

y

x

tttt

tttt

z

y

x

 (4)

Change t =-t, then:







































−

+

=



















11000

cos10sin18cos0sin

9010

sin10cos18sin0cos

1

0

0

0

z

y

x

tttt

tttt

z

y

x

(5)

Then the final coordinates are some time dependent

functions definited to R →R.

 x(t) = x0cost + z0sint + 18cost + 10 sint

 y(t) = y0+9 (6)

 z(t) = x0sint + z0cost + 18sint – 10cost

or:

 x(t) = (x0 + 18) cost+ (z0 + 10) sint (7)

 y(t) = y0+9

Fig. 3. Time dependency of the x coordinate for

equation 6.

It can be observed that the initial value of y

coordinate is modified only by translation, the

rotation preserving it. The approximate graphic of the

x(t) function can be seen in Fig. 3. The function

repeats periodically as can be observed in the figure.

The graphic for z(t) function is similar (Fig. 4.).

Fig. 4. Time dependency of the z coordinate for

equation 6.

If a rotation around an axis different from the system

axis, the transformation matrices, applied in the

same order, look like this:



















−

−

=

1000

10100

3010

18001

T (8)

The rotation matrix around (2, 50, 1) axis is:





















+−−−+−

+−+−−−

−−+−+−

=

1000

0cos)cos1(sin)cos1(sin)cos1(

0sin)cos1(cos)cos1(sin)cos1(

0sin)cos1(sin)cos1(cos)cos1(

2
0000000

000
2
0000

000000
2
0

tzttxzyttyzxt

txzyttyttzyxt

tyzxttzyxttxt

Raxis

(9)

where x0=2, y0=50, z0=1.

By replacing the values with the coordinates of the

rotation axis, we obtain:



















−−+−

+−−−−

−−+−−

1000

01sin250)cos1(sin502)cos1(

0sin250)cos1(cos24992500sin100)cos1(

0sin502)cos1(sin100)cos1(cos34

tttt

ttttt

ttttt

(10)

where t = timeGetTime()/1000.

This means that after the calculations, the following

expression is obtained:

x0+18

z0-10

-z0-10

-x0-18

90 180 270 360

X

t

X

t

0

x0+18

z0+10

 180 360

-x0-18

-z0-10







































−−+−

+−−−−

−−+−−

=



















1

.

1000

1sin250)cos1(sin502)cos1(

sin250)cos1(cos24992500sin100)cos1(

sin502)cos1(sin100)cos1(cos34

1

0

0

0

z

y

x

ctttt

bttttt

attttt

z

y

x

 (11)

Where:

a = -18*(4-3cost) + 3*(100 – 100cost +sint)+2 –2cost

–50sint = 230-248cost-47sint

b = -18*(100-100cost-sint) + 3*(2500-2499cost) + 50

–50cost + 2sint (12)

 = 5750 –5747cost + 20sint

c = 18*(2-2cost+50sint) +3*(50-50cost-2sint)+1

 = 187 – 186cost + 894sint

Then, the final coordinates are some time functions

on R→R:

x(t) = x0*(4-3cost) + y0*[100*(1-cost)+sint] + z0

[2*(1-cost)-50sint] + 230-248cost- 47sint (13)

y(t) = x0*[100(1-cost)-sint] + y0*[2500-2499cost] +

z0[50(1-cost)+2sint] + 5750–5747cost + 20sint (14)

z(t) = x0*[2*(1-cost)+50sint] + y0*[50*(1-cost)-

2sint] + z0 + 187 – 186cost + 894sint (15)

The approximate graphic of the x(t) function is

presented in Fig. 5. The function repeats periodically

as can be seen in the figure.

The graphic for z(t) coordinate is similar (Fig. 6.).

Fig. 5. Time dependency of the x coordinate for

equation 13.

Fig. 6. Time dependency of the z coordinate for

equation 15.

For a translation movement to an object for only a

short time, the final coordinates of the objects are

given by this relation:





















=



















1

.

1

0

0

0

z

y

x

T
z

y

x

 (16)



















=

1000

0100

010

0001

t
T (17)

where t = timeGetTime()%32000/1000

So,

 x(t) = x0

 y(t) = y0 + t (18)

 z(t) = z0

Then, the homologous values for x and z are some

constants, namely, the first values of the object on

these axis; only y(t) function depends linearly on

time.

How can the definition field for y(t) function be

calculated? First, it is known that

timeGetTime()%32000 has only integer values, in {0,

1, 2 … 31999}. Then, (timeGetTime()%32000)/1000

can only have integer values in: {0, 1, … 31}. So,

this function has only 32 values, but it uses only 29,

because the object is translated just as long as

(timeGetTime()%32000)<29000, otherwise, the

object has a static translation.

Then, it can be written the following function in

order to find the coordinates:

x(t) = x0 (19)

z(t) = z0 (20)

y0 + t, if t∈{0, 1, …, 28}

y(t) = (21)

y0 + 29, if t∈{29, 30, 31}

The graphic for x(t) is in Fig. 7.

Fig. 7. The graphic for x(t) function for equation 19.

X

t

0

x0+18

z0+10

90 180 270 360

-x0-18
-z0-10

x0+18

z0-10

-z0+10

-x0-18

90 180 270 360

z

t
x

t

0

x0

The graphic for z(t) is in Fig. 8.

Fig. 8. The graphic for z(t) function for equation 20.

But, for y(t), the graphic is different as can be seen in

Fig. 9.

Fig. 9. The graphic for y(t) function for equation 21.

Other composition of fundamental transformations,

more challenging, is when the movement of some

wings is needed. But some wings beating into a point

in space are not something spectacular. For realism,

they will be translated together with a body where

they are attached. Usually, or at least in this case, the

wings and the body are parts of the same mesh. Next

two time cycles will be chosen, the first one being

used only for the wings, the other, for both the wings

and the body.

The time is calculated as always, but a rotation in

t1=timeGetTime()%500/1500 and a translation in

t2=timeGetTime()%20000/1000 are used.

I-st case

The operations applied are a scaling, a rotation

around Ox axis and a translation.

[] [] [] []



















⋅⋅⋅⋅=



















11

0

0

0

z

y

x

ScRxTrsTrd
z

y

x

 (22)

The matrices are:

[]

















 +

=

1000

1100

010

1001

2

2

t

t

Trd (23)

Take into consideration that:

t2 = t % 20000 / 1000 (24)

t1 = t % 500 / 1500 (25)

[]



















−

−

=

1000

0100

10010

10001

Trs
 (26)

[]



















−
=

1000

0cossin0

0sincos0

0001

11

11

tt

tt
Rx (27)

[]



















=

1000

0002.000

00002.00

000002.0

Sc
 (28)

Substitute the values and make all the calculations,

and obtain:

 x(t) = 0.002 x0 + t2 – 9

 y(t) = 0.002 y0 cost1 – 0.002 z0 sint1 + t2 – 10 (29)

 z(t) = 0.002 y0 sint1 + 0.002 z0 cost1 – 9

II-nd case

A rotation around Oy axis, a scaling, a rotation round

Ox axis and a translation are applied. So, the final

relation is:

[] [] [] []



















⋅⋅⋅⋅=



















11

0

0

0

z

y

x

RyScRxTr
z

y

x

 (30)

where

z

t
0

z0

t

y

0

y0

1 28

y0 + 28

y0 + 29

29 30 31

[]



















=

0000

1100

10010

10001

Tr
 (31)

[]



















−
=

1000

0cossin0

0sincos0

0001

11

11

tt

tt
Rx

 (32)

[]



















=

1000

0002.000

00002.00

000002.0

Sc
 (33)

[]



















−
=

1000

0cos0sin

0010

0sin0cos

aa

aa

Ry
, (34)

where = 4π/3.

Finally,

x(t) = 0.002x0 cosa + 0.002 z0 sina + 10 (35)

y(t) = 0.002 x0 sina sint1 + 0.002 y0 cost1 – 0.002 z0

cosa sint1 + 10 (36)

z(t) = 0.002 x0 sina cost1 + 0.002 y0 sint1 + 0.002 z0

cosa cost1 + 1 (37)

For the body of the flying man a scaling, a translation

and a rotation are applied. The flying man’s body and

the wings are parts of the same mesh; as a result,

both the rotation and the translation are made with

the same time dependent function and the same

position.

Time is kept timeGetTime()%5000/1000, the rotation

is made with 100t and the translation is made with -

16 on Oy.

For t∈{0…3} it results:

[] [] []



















⋅⋅⋅=



















11

0

0

0

z

y

x

ScTRy
z

y

x

 (38)

Then, after computing, the results are:

x(t) = 0.002 cos100t x0 + 0.002 z0 sin100t

y(t) = 0.002 y0 – 16 (39)

z(t) = –0.002 x0 sin100t + 0.002 z0 cos100t

For t≥4, apply the same scaling and rotation matrix,

but the rotation around Oy axis is made with 0

degrees, therefore the matrix has the principal

diagonal 1.

Therefore, the second case has the following results:

 x(t) = 0.002*x0

 y(t) = 0.002*y0 – 16 (40)

 z(t) = 0.002*z0

The three functions are x,y,z : {0…4} → R.

()
{ }






≥

∈+⋅
=

4,002.0

3..0,100sin002.0100cos002.0

0

00

tx

ttzxt
tx (41)

() 




−

−
=

16002.0

16002.0

0

0

y

y
ty , (42)

()
{ }






≥

∈+−
=

4,002.0

3..0,100cos002.0100sin002.0

0

00

tz

ttztx
tz (43)

4. CONCLUSIONS

Computer graphics and especially animation is a

complex but also a very useful aspect of most of the

present applications.

The application is implemented in Microsoft Visual

C++ 7.0 (Microsoft Visual Studio .NET) and uses

DirectX 9.0c libraries. The meshes are conceived in

3D Studio Max. The purpose of the application is to

manipulate the meshes dinamycally in order to

animate the scene. This is done by using the DirectX

functions for basic transformations with time

dependent parameters.

The project can be further developed by adding more

complex and more artistic elements and stages

created in 3D Studio Max or other modelling

software. Also the optimization of the program can

be moved to a superior level, thus giving the

possibility to run complex animated software on a

computer with medium resources.

5. REFERENCES

Adams, J. (2004), Programming Role Playing Games

with DirectX, Second Edition (Game Development

Series), Premier Press, USA.

Gray K. (2003), The Microsoft DirectX 9

Programmable Graphics Pipeline, Microsoft

Press, USA.

Jones, W. (2004), Beginning DirectX 9, Premier

Press, USA.

LaMothe A. (2003), Tricks of the 3D Game

Programming Gurus-Advanced 3D Graphics and

Rasterization, SAMS, USA.

Luna, F. D. (2003), Introduction to 3D Game

Programming with DirectX 9.0, Wordware

Publishing, Inc., USA.

Miller T. (2003), Managed DirectX 9 Kick Start :

Graphics and Game Programming, SAMS, USA.

Snook G. (2003), Real-Time 3D Terrain Engines

Using C++ and DirectX 9 (Game Development

Series), Charles River Media Inc., USA.

