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Abstract: This paper focuses on animation creation based on time dependent 

transformations in a real case and presents a solution that uses computer graphics 

techniques in interactive applications. The application is elaborated starting with a story 

theme and every character or element of the scene has a transformation matrix attached 

that defines the final movement of the object. 
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1. INTRODUCTION 
 

Computer graphics is a discipline which is situated 

between the computer digital system programming 

and computation techniques that concern image 

design. 

 

The object of computer graphics is the creation, the 

storage and the manipulation of the models of some 

objects and effects as well as the images attached to 

them, using the digital computer. A science 

connected with this is the computer image processing 

that deals with images using the digital computer. 

 

The two disciplines have some common aspects, but 

they use different methods and techniques. The 

current vision is adjacency between them, especially 

after the appearance of the high resolution raster 

graphics. Even the mathematical instruments they use 

are complementary: the image design is based on 

geometry and algebra, while the image analysis is 

based on trigonometry and mathematical analysis. 

 

In this paper one of the great aspects in computer 

graphics is discussed, namely, the creation of 

animation. It is true, the animation can be done in 3D 

Studio Max, but this manner is not our objective. 

In DirectX9, the animation can be created using 

frames or by simple and complex transformations 

over the objects, transformations that are time 

dependent. 

 

This paper debates about how to create animation 

with basic time dependent transformations in a real 

case: using computer graphics techniques in 

interactive applications. The application is elaborated 

starting with a story theme and every character or 

element of the scene has a transformation matrix 

attached that defines the final movement of the 

object. 

 

Beside the transformation matrices modifying the 

form of the object that will be discussed, every 

component part of the 3D scene has a projection into 

the view space. For this operation two functions are 

used: the WINAMPID3DXMatrixLookAtLH() 

function, whose parameters specify the position 

where the camera is placed in the world, a point in 

the world where the camera aims and a vector that 

indicates which direction is “up” in the 3D world 

(usually this is the Oy axis). This function sets the 

view matrix. 

 

WINAMPID3DXMatrixLookFovLH() function is 

used for setting the projection matrix.  The projection 



transformation defines our viewing volume (frustum) 

and is responsible for projecting the geometry in the 

frustum onto the projection window. The projection 

matrix is complex, using a view space (usually ¼ pi), 

distance to near and to far plane and aspect ratio (the 

geometry of the projection window is eventually 

transformed to screen space; the transformation from 

a square – projection window – to the screen, witch is 

a rectangle, causes a stretching distortion; the aspect 

ratio is simply the ratio between the screen’s two 

dimensions and it is used to correct the distortion 

caused by mapping from a square to a rectangle; 

aspectRatio = screenWidth/screenHeight). 

 

To make one or more transformations to an object the 

transformation matrix must be set, based on which 

are the transformations for the object and which is 

their application order. The application of a number 

of fundamental transformations to an object by 

modifying its position in time is made by modifying 

the object’s initial coordinates. The most important 

thing in creating animation is to find the time 

dependence for the evolution of the coordinates of 

those objects. 

 

 

2. GENERAL ASPECTS 

 

In order to set different objects, either meshes or 

simple objects created in Direct3D, transformation 

matrices were used. To generate the animation both 

static and dynamic transformations were used. The 

matrices used to create all the operations are 

homogeneous matrices. The order of the fundamental 

transformations application it is very important, as 

well as the choice of time variables.  

 

Depending on the order of the operations application, 

objects might have a different visualization. For 

instance, if an object, situated initially in the origin, 

is first rotated and then translated, the result will be a 

rotation around an axis, but the axis is out of origin). 

Instead, if first a translation is done and then a 

rotation (the rotation is time dependent) the result 

will not be a rotation around Oy axis (for example) 

where the object circulates round Oy axis like it is 

attached on this axis, but a rotation around Oy axis 

with a radius determined by the translation vector 

(see Fig. 1.). 

 

 

Fig. 1. Different results for different order of 

transformation application – rotation and translation. 

 

Fig. 2. Different results for different order of 

transformation application – scaling and translation. 

 

Let’s analyze the evolution of a 3D object when it is 

translated and scaled, in both situations (first a 

scaling then a translation; first a translation, then a 

scaling). The scaling factors and the point where the 

translation is made are the same in both situations. 

The difference is presented in Fig. 2. 

 

The objects used for various transformations can be 

objects created with drawing primitives from the 

DirectX libraries or the meshes from 3D Studio Max 

loaded into Direct3D object. If we are dealing with a 

drawn object, this is seen like as a whole unit. In the 

case of meshes, to create animation can be more 

complex. A mesh consists of one or more subsets. A 

subset is a group of triangles in the mesh that can be 

all rendered using the same attributes. Let’s take the 

following situation: a gremlin (every component part 

of the creature is a subset) that trembles across a fire 

hole and, during  this time, it moves his tail. In order 

to realize this animation, both the gremlin’s body (all 

that represents the body, except the tail) and his tail, 

will do a periodical translation movement on Oy axis, 

at the same time. More, over the tail will make a 

supplementary movement, a translation or a rotation 

(it depends what kind of movement is wanted for this 

object) generated by means of a different time 

dependency from the first used. 

 

 

3. ANIMATION REALIZATION 

 

These being said, let’s suppose that a complete and 

permanent rotation to a mesh is needed. First, apply 

to the object o periodical rotation around Oy axis, 

then it will be translated into the point from where 

the rotation will start. Notice that the transformation 

that appears first in the line of multiplied 

transformations will actually be the last to be applied. 

 

The translation matrix attached to this operation is: 
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and the rotation matrix around Oy axis: 
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where t = cos π * timeGetTime()/1500  

= -timeGetTime()/1500 

 

It is noticeable the way how the rotation period is 

chosen. 

  

Then, 
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That means we have the next relation after the 

determinations: 
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Change t =-t, then: 
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Then the final coordinates are some time dependent 

functions definited to R →R. 

 

  x(t) = x0cost + z0sint + 18cost + 10 sint 

  y(t) = y0+9                            (6) 

  z(t) = x0sint + z0cost + 18sint – 10cost 

 

or: 

 

  x(t) = (x0 + 18) cost+ (z0 + 10) sint           (7) 

  y(t) = y0+9 

Fig. 3. Time dependency of the x coordinate for 

equation 6. 

It can be observed that the initial value of y 

coordinate is modified only by translation, the 

rotation preserving it. The approximate graphic of the 

x(t)  function can be seen in Fig. 3. The function 

repeats periodically as can be observed in the figure.  

 

The graphic for z(t) function is similar (Fig. 4.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Time dependency of the z coordinate for 

equation 6. 

 

If a rotation around an axis different from the system 

axis, the transformation matrices, applied in the  

same order, look like this: 
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The rotation matrix around (2, 50, 1) axis is: 
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where x0=2, y0=50, z0=1. 

 

By replacing the values with the coordinates of the 

rotation axis, we obtain: 
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where t = timeGetTime()/1000.   

 

This means that after the calculations, the following 

expression is obtained: 
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Where: 

 

a = -18*(4-3cost) + 3*(100 – 100cost +sint)+2 –2cost 

–50sint = 230-248cost-47sint 

b = -18*(100-100cost-sint) + 3*(2500-2499cost) + 50 

–50cost + 2sint             (12) 

  = 5750 –5747cost + 20sint 

c = 18*(2-2cost+50sint) +3*(50-50cost-2sint)+1  

   = 187 – 186cost + 894sint              

 

Then, the final coordinates are some time functions 

on R→R: 

   

x(t) = x0*(4-3cost) + y0*[100*(1-cost)+sint] + z0 

[2*(1-cost)-50sint] + 230-248cost-   47sint         (13) 

y(t) = x0*[100(1-cost)-sint] + y0*[2500-2499cost] + 

z0[50(1-cost)+2sint] + 5750–5747cost + 20sint  (14) 

z(t) = x0*[2*(1-cost)+50sint] + y0*[50*(1-cost)-

2sint] + z0 + 187 – 186cost + 894sint                  (15) 

 

The approximate graphic of the x(t) function is 

presented in Fig. 5. The function repeats periodically 

as can be seen in the figure. 

 

The graphic for z(t) coordinate is similar (Fig. 6.). 

 

 

 

 

 

 

 

 

 

 

  

 

  

Fig. 5. Time dependency of the x coordinate for 

equation 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Fig. 6. Time dependency of the z coordinate for 

equation 15. 

For a translation movement to an object for only a 

short time, the final coordinates of the objects are 

given by this relation:   
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where t = timeGetTime()%32000/1000 

 

So,  

 

  x(t) = x0 

  y(t) = y0 + t                                       (18) 

  z(t) = z0 

 

Then, the homologous values for x and z are some 

constants, namely, the first values of the object on 

these axis; only y(t) function depends linearly on 

time. 

 

How can the definition field for y(t) function be 

calculated? First, it is known that 

timeGetTime()%32000 has only integer values, in {0, 

1, 2 … 31999}. Then, (timeGetTime()%32000)/1000 

can  only have integer values in: {0, 1, … 31}. So, 

this function has only 32 values, but it uses only 29, 

because the object is translated just as long as 

(timeGetTime()%32000)<29000, otherwise, the 

object has a static translation.  

 

Then, it can be written the following function in 

order to find the coordinates: 

 

x(t) = x0                  (19) 

z(t) = z0             (20) 

y0 + t, if t∈{0, 1, …, 28} 

y(t) =              (21) 

y0 + 29, if t∈{29, 30, 31} 

 

The graphic for x(t) is in Fig. 7. 

 

 

 

 

  

 

   

 

 

 

Fig. 7. The graphic for x(t) function for equation 19. 
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The graphic for z(t) is in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

   

 

Fig. 8. The graphic for z(t) function for equation 20. 

 

But, for y(t), the graphic is different as can be seen in 

Fig. 9. 

 

     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

   

 

 

Fig. 9. The graphic for y(t) function for equation 21. 

 

Other composition of fundamental transformations, 

more challenging, is when the movement of some 

wings is needed. But some wings beating into a point 

in space are not something spectacular. For realism, 

they will be translated together with a body where 

they are attached. Usually, or at least in this case, the 

wings and the body are parts of the same mesh. Next 

two time cycles will be chosen, the first one being 

used only for the wings, the other, for both the wings 

and the body. 

 

The time is calculated as always, but a rotation in 

t1=timeGetTime()%500/1500 and a translation in 

t2=timeGetTime()%20000/1000 are used.  

 

I-st case 

The operations applied are a scaling, a rotation 

around Ox axis and a translation. 
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The matrices are: 
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Take into consideration that:  

 

t2 = t % 20000 / 1000                        (24) 

t1 = t % 500 / 1500                        (25) 
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Substitute the values and make all the calculations, 

and obtain: 

 

      x(t) = 0.002 x0 + t2 – 9 

      y(t) = 0.002 y0 cost1 – 0.002 z0 sint1 + t2 – 10  (29) 

      z(t) = 0.002 y0 sint1 + 0.002 z0 cost1 – 9 

  

II-nd case 

 

A rotation around Oy axis, a scaling, a rotation round 

Ox axis and a translation are applied. So, the final 

relation is: 
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where 
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where = 4π/3. 

 

Finally, 

 

x(t) = 0.002x0 cosa + 0.002 z0 sina + 10         (35) 

y(t) = 0.002 x0 sina sint1 + 0.002 y0 cost1 – 0.002 z0 

cosa sint1 + 10            (36) 

z(t) = 0.002 x0 sina cost1 + 0.002 y0 sint1 + 0.002 z0 

cosa cost1 + 1            (37) 

  

For the body of the flying man a scaling, a translation 

and a rotation are applied. The flying man’s body and 

the wings are parts of the same mesh; as a result, 

both the rotation and the translation are made with 

the same time dependent function and the same 

position. 

  

Time is kept timeGetTime()%5000/1000, the rotation 

is made with 100t and the translation is made with -

16 on Oy. 

  

For t∈{0…3} it results: 
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Then, after computing, the results are: 

 

x(t) = 0.002 cos100t x0 + 0.002 z0 sin100t 

y(t) = 0.002 y0 – 16                                                (39) 

z(t) =  –0.002 x0 sin100t + 0.002 z0 cos100t 

 

For t≥4, apply the same scaling and rotation matrix, 

but the rotation around Oy axis is made with 0 

degrees, therefore the matrix has the principal 

diagonal 1. 

 

Therefore, the second case has the following results: 

 

      x(t) = 0.002*x0 

      y(t) = 0.002*y0 – 16                        (40) 

      z(t) = 0.002*z0 

 

The three functions are x,y,z : {0…4} → R. 
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4. CONCLUSIONS 

 

Computer graphics and especially animation is a 

complex but also a very useful aspect of most of the 

present applications. 

 

The application is implemented in Microsoft Visual 

C++ 7.0 (Microsoft Visual Studio .NET) and uses 

DirectX 9.0c libraries. The meshes are conceived in 

3D Studio Max. The purpose of the application is to 

manipulate the meshes dinamycally in order to 

animate the scene. This is done by using the DirectX 

functions for basic transformations with time 

dependent parameters. 

 

The project can be further developed by adding more 

complex and more artistic elements and stages 

created in 3D Studio Max or other modelling 

software. Also the optimization of the program can 

be moved to a superior level, thus giving the 

possibility to run complex animated software on a 

computer with medium resources. 
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